中国科学院化学研究所机构知识库
Advanced  
ICCAS OpenIR  > 有机固体实验室  > 期刊论文
题名: Revealing the influence of the solvent evaporation rate and thermal annealing on the molecular packing and charge transport of DPP(TBFu)(2)
作者: Han, Guangchao1, 2; Shen, Xingxing1, 2; Duan, Ruihong1, 2; Geng, Hua1; Yi, Yuanping1
刊名: JOURNAL OF MATERIALS CHEMISTRY C
发表日期: 2016
卷: 4, 期:21, 页:4654-4661
收录类别: SCI
英文摘要: By means of atomistic molecular dynamics simulations, we have investigated the effect of the solvent evaporation rate and thermal annealing on the molecular packing morphology of a diketopyrrolopyrrole based organic photovoltaic donor material, DPP(TBFu)(2), which displays excellent hole mobility. It is observed that slow evaporation of solvent will lead to a relatively high degree of molecular packing order while leaving many voids in the as-cast sample. Upon thermal annealing, the as-cast samples at both fast and slow evaporation rates become more compact and much more apparently at the slow evaporation rate. Interestingly, the effect of thermal annealing on molecular packing order depends on the solvent evaporation rates of the as-cast samples. Upon thermal annealing, the molecular packing order of the fast evaporated sample is enhanced with increased p-p stacks. In contrast, thermal annealing will decrease the degree of packing order for the slow evaporated sample since the orientations and conformations of the molecules at the aggregate boundaries are substantially modulated to squeeze the voids. Electrical network analyses point to the fact that the mesoscopic electrical connectivities for all the samples are quite effective and insensitive to the modifications of local molecular ordering due to the delocalized HOMO of DPP(TBFu)(2) providing efficient intermolecular electronic interactions. The hole mobilities of all the fabricated samples are thus estimated to be similar and quite high. Finally, our simulations point to the fact that the modest enhancement of mobility upon thermal annealing is correlated with the increased density rather than the varied ordering of molecular packing. Our work provides an atomistic insight into the evolution of thin-film morphology of organic photovoltaic molecular materials during solution processing and thermal annealing treatments and sheds light on the correlation between the molecular structure, packing morphology and hole transport capability.
语种: 英语
内容类型: 期刊论文
URI标识: http://ir.iccas.ac.cn/handle/121111/35793
Appears in Collections:有机固体实验室_期刊论文

Files in This Item:

There are no files associated with this item.


作者单位: 1.Chinese Acad Sci, Beijing Natl Lab Mol Sci, Inst Chem, CAS Key Lab Organ Solids, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Han, Guangchao]'s Articles
[Shen, Xingxing]'s Articles
[Duan, Ruihong]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Han, Guangchao]‘s Articles
[Shen, Xingxing]‘s Articles
[Duan, Ruihong]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2017  中国科学院化学研究所 - Feedback
Powered by CSpace