中国科学院化学研究所机构知识库
Advanced  
ICCAS OpenIR  > 高分子物理与化学实验室  > 期刊论文
题名: A new strategy to construct thermoelectric composites of SWCNTs and poly-Schiff bases with 1,4-diazabuta-1,3-diene structures acting as bidentate-chelating units
作者: Gao, Caiyan1; Chen, Guangming1
刊名: JOURNAL OF MATERIALS CHEMISTRY A
发表日期: 2016
卷: 4, 期:29, 页:11299-11306
收录类别: SCI
英文摘要: Although organic polymer/inorganic particle composites with thermoelectric (TE) performance have witnessed rapid progress in recent years, previous studies mainly focused on a few classically conducting polymers. Schiff base polymers have various advantages such as their ease of preparation, versatile derivatives and adjustable complexation. Unfortunately, studies of Schiff base TE composites are very scarce. The only example reported so far is obtained via a two-step procedure, i.e. synthesis of monomer and subsequent polymerization. Here, we report a convenient one-pot preparation and the TE performances of a series of flexible composite films based on single-walled carbon nanotubes (SWCNTs) and a novel poly-Schiff base, which is achieved via a condensation reaction between glyoxal and p-phenylenediamine. Furthermore, the TE performance of the poly-Schiff base composites reported herein can be conveniently adjusted by chelating transition metal ions. The results reveal that both the preparation method and the poly-Schiff base/SWCNT mass ratio have important impacts on the composite TE performance. The electrical conductivities and the Seebeck coefficients for the physically mixed composites exhibit opposite variation tendencies with poly-Schiff base/SWCNT mass ratio, while the power factors increase with increasing mass ratio. At a poly-Schiff base/SWCNT mass ratio of 1 : 3, the physically mixed composite reaches the highest power factor of 77.7 +/- 5.8 mu W m(-1) K-2. Finally, by chelating transition metal ions with 1,4-diazabuta-1,3-diene unit of poly-Schiff base, the TE performances of poly-Schiff base/transition metal/SWCNT composites are conveniently adjusted.
语种: 英语
内容类型: 期刊论文
URI标识: http://ir.iccas.ac.cn/handle/121111/35175
Appears in Collections:高分子物理与化学实验室_期刊论文

Files in This Item:

There are no files associated with this item.


作者单位: 1.Chinese Acad Sci, Inst Chem, Beijing 100190, Peoples R China
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Gao, Caiyan]'s Articles
[Chen, Guangming]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Gao, Caiyan]‘s Articles
[Chen, Guangming]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2017  中国科学院化学研究所 - Feedback
Powered by CSpace